Understanding and Detecting Hateful Content using Contrastive Learning
The spread of hate speech and hateful imagery on the Web is a significant problem that needs to be mitigated to improve our Web experience. This work contributes to research efforts to detect and understand hateful content on the Web by undertaking a multimodal analysis of Antisemitism and Islamophobia on 4chan's /pol/ using OpenAI's CLIP. This large pre-trained model uses the Contrastive Learning paradigm. We devise a methodology to identify a set of Antisemitic and Islamophobic hateful textual phrases using Google's Perspective API and manual annotations. Then, we use OpenAI's CLIP to identify images that are highly similar to our Antisemitic/Islamophobic textual phrases. By running our methodology on a dataset that includes 66M posts and 5.8M images shared on 4chan's /pol/ for 18 months, we detect 573,513 posts containing 92K Antisemitic/Islamophobic images and 246K posts that include 420 hateful phrases. Among other things, we find that we can use OpenAI's CLIP model to detect hateful content with an accuracy score of 0.84 (F1 score = 0.58). Also, we find that Antisemitic/Islamophobic imagery is shared in 2x more posts on 4chan's /pol/ compared to Antisemitic/Islamophobic textual phrases, highlighting the need to design more tools for detecting hateful imagery. Finally, we make publicly available a dataset of 420 Antisemitic/Islamophobic phrases and 92K images that can assist researchers in further understanding Antisemitism/Islamophobia and developing more accurate hate speech detection models.
READ FULL TEXT