Understanding complex predictive models with Ghost Variables

12/13/2019
by   Pedro Delicado, et al.
17

We propose a procedure for assigning a relevance measure to each explanatory variable in a complex predictive model. We assume that we have a training set to fit the model and a test set to check the out of sample performance. First, the individual relevance of each variable is computed by comparing the predictions in the test set, given by the model that includes all the variables with those of another model in which the variable of interest is substituted by its ghost variable, defined as the prediction of this variable by using the rest of explanatory variables. Second, we check the joint effects among the variables by using the eigenvalues of a relevance matrix that is the covariance matrix of the vectors of individual effects. It is shown that in simple models, as linear or additive models, the proposed measures are related to standard measures of significance of the variables and in neural networks models (and in other algorithmic prediction models) the procedure provides information about the joint and individual effects of the variables that is not usually available by other methods. The procedure is illustrated with simulated examples and the analysis of a large real data set.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset