Understanding Dynamic Tactile Sensing for Liquid Property Estimation

05/18/2022
by   Hung-Jui Huang, et al.
0

Humans perceive the world by interacting with objects, which often happens in a dynamic way. For example, a human would shake a bottle to guess its content. However, it remains a challenge for robots to understand many dynamic signals during contact well. This paper investigates dynamic tactile sensing by tackling the task of estimating liquid properties. We propose a new way of thinking about dynamic tactile sensing: by building a light-weighted data-driven model based on the simplified physical principle. The liquid in a bottle will oscillate after a perturbation. We propose a simple physics-inspired model to explain this oscillation and use a high-resolution tactile sensor GelSight to sense it. Specifically, the viscosity and the height of the liquid determine the decay rate and frequency of the oscillation. We then train a Gaussian Process Regression model on a small amount of the real data to estimate the liquid properties. Experiments show that our model can classify three different liquids with 100 volume with high precision and even estimate the concentration of sugar-water solution. It is data-efficient and can easily generalize to other liquids and bottles. Our work posed a physically-inspired understanding of the correlation between dynamic tactile signals and the dynamic performance of the liquid. Our approach creates a good balance between simplicity, accuracy, and generality. It will help robots to better perceive liquids in different environments such as kitchens, food factories, and pharmaceutical factories.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset