Understanding person identification via gait
Gait recognition is the process of identifying humans from their bipedal locomotion such as walking or running. As such gait data is privacy sensitive information and should be anonymized. With the rise of more and higher quality gait recording techniques, such as depth cameras or motion capture suits, an increasing amount of high-quality gait data becomes available which requires anonymization. As a first step towards developing anonymization techniques for high-quality gait data, we study different aspects of movement data to quantify their contribution to the gait recognition process. We first extract categories of features from the literature on human gait perception and then design computational experiments for each of the categories which we run against a gait recognition system. Our results show that gait anonymization is a challenging process as the data is highly redundant and interdependent.
READ FULL TEXT