Unique in the Smart Grid -The Privacy Cost of Fine-Grained Electrical Consumption Data
The collection of electrical consumption time series through smart meters grows with ambitious nationwide smart grid programs. This data is both highly sensitive and highly valuable: strong laws about personal data protect it while laws about open data aim at making it public after a privacy-preserving data publishing process. In this work, we study the uniqueness of large scale real-life fine-grained electrical consumption time-series and show its link to privacy threats. Our results show a worryingly high uniqueness rate in such datasets. In particular, we show that knowing 5 consecutive electric measures allows to re-identify on average more than 90 half-hourly electric time series dataset. Moreover, uniqueness remains high even when data is severely degraded. For example, when data is rounded to the nearest 100 watts, knowing 7 consecutive electric measures allows to re-identify on average more than 40 study the relationship between uniqueness and entropy, uniqueness and electric consumption, and electric consumption and temperatures, showing their strong correlation.
READ FULL TEXT