Universal Online Learning: an Optimistically Universal Learning Rule

01/16/2022
by   Moise Blanchard, et al.
0

We study the subject of universal online learning with non-i.i.d. processes for bounded losses. The notion of an universally consistent learning was defined by Hanneke in an effort to study learning theory under minimal assumptions, where the objective is to obtain low long-run average loss for any target function. We are interested in characterizing processes for which learning is possible and whether there exist learning rules guaranteed to be universally consistent given the only assumption that such learning is possible. The case of unbounded losses is very restrictive, since the learnable processes almost surely visit a finite number of points and as a result, simple memorization is optimistically universal. We focus on the bounded setting and give a complete characterization of the processes admitting strong and weak universal learning. We further show that k-nearest neighbor algorithm (kNN) is not optimistically universal and present a novel variant of 1NN which is optimistically universal for general input and value spaces in both strong and weak setting. This closes all COLT 2021 open problems posed by Hanneke on universal online learning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset