Unmixing of Hyperspectral Data Using Robust Statistics-based NMF

12/04/2012
by   Roozbeh Rajabi, et al.
0

Mixed pixels are presented in hyperspectral images due to low spatial resolution of hyperspectral sensors. Spectral unmixing decomposes mixed pixels spectra into endmembers spectra and abundance fractions. In this paper using of robust statistics-based nonnegative matrix factorization (RNMF) for spectral unmixing of hyperspectral data is investigated. RNMF uses a robust cost function and iterative updating procedure, so is not sensitive to outliers. This method has been applied to simulated data using USGS spectral library, AVIRIS and ROSIS datasets. Unmixing results are compared to traditional NMF method based on SAD and AAD measures. Results demonstrate that this method can be used efficiently for hyperspectral unmixing purposes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset