Unrolled Architectures for High-Throughput Encoding of Multi-Kernel Polar Codes

05/07/2023
by   Hossein Rezaei, et al.
0

Over the past decade, polar codes have received significant traction and have been selected as the coding method for the control channel in fifth-generation (5G) wireless communication systems. However, conventional polar codes are reliant solely on binary (2x2) kernels, which restricts their block length to being only powers of 2. In response, multi-kernel (MK) polar codes have been proposed as a viable solution to attain greater code length flexibility. This paper proposes an unrolled architecture for encoding both systematic and non-systematic MK polar codes, capable of high-throughput encoding of codes constructed with binary, ternary (3x3), or binary-ternary mixed kernels. The proposed scheme exhibits an unprecedented level of flexibility by supporting 83 different codes and offering various architectures that provide trade-offs between throughput and resource consumption. The FPGA implementation results demonstrate that a partially-pipelined polar encoder of size N=4096 operating at a frequency of 270 MHz gives a throughput of 1080 Gbps. Additionally, a new compiler implemented in Python is given to automatically generate HDL modules for the desired encoders. By inserting the desired parameters, a designer can simply obtain all the necessary VHDL files for FPGA implementation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro