Unsupervised Learning of Disentangled Representations from Video
We present a new model DrNET that learns disentangled image representations from video. Our approach leverages the temporal coherence of video and a novel adversarial loss to learn a representation that factorizes each frame into a stationary part and a temporally varying component. The disentangled representation can be used for a range of tasks. For example, applying a standard LSTM to the time-vary components enables prediction of future frames. We evaluate our approach on a range of synthetic and real videos, demonstrating the ability to coherently generate hundreds of steps into the future.
READ FULL TEXT