Using Multiple Self-Supervised Tasks Improves Model Robustness

04/07/2022
by   Matthew Lawhon, et al.
0

Deep networks achieve state-of-the-art performance on computer vision tasks, yet they fail under adversarial attacks that are imperceptible to humans. In this paper, we propose a novel defense that can dynamically adapt the input using the intrinsic structure from multiple self-supervised tasks. By simultaneously using many self-supervised tasks, our defense avoids over-fitting the adapted image to one specific self-supervised task and restores more intrinsic structure in the image compared to a single self-supervised task approach. Our approach further improves robustness and clean accuracy significantly compared to the state-of-the-art single task self-supervised defense. Our work is the first to connect multiple self-supervised tasks to robustness, and suggests that we can achieve better robustness with more intrinsic signal from visual data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset