Using Pre-Training Can Improve Model Robustness and Uncertainty

01/28/2019
by   Dan Hendrycks, et al.
17

Tuning a pre-trained network is commonly thought to improve data efficiency. However, Kaiming He et al. have called into question the utility of pre-training by showing that training from scratch can often yield similar performance, should the model train long enough. We show that although pre-training may not improve performance on traditional classification metrics, it does provide large benefits to model robustness and uncertainty. Through extensive experiments on label corruption, class imbalance, adversarial examples, out-of-distribution detection, and confidence calibration, we demonstrate large gains from pre-training and complementary effects with task-specific methods. We show approximately a 30 label noise robustness and a 10 on CIFAR-10 and CIFAR-100. In some cases, using pre-training without task-specific methods surpasses the state-of-the-art, highlighting the importance of using pre-training when evaluating future methods on robustness and uncertainty tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro