Using Single-Trial Representational Similarity Analysis with EEG to track semantic similarity in emotional word processing
Electroencephalography (EEG) is a powerful non-invasive brain imaging technique with a high temporal resolution that has seen extensive use across multiple areas of cognitive science research. This thesis adapts representational similarity analysis (RSA) to single-trial EEG datasets and introduces its principles to EEG researchers unfamiliar with multivariate analyses. We have two separate aims: 1. we want to explore the effectiveness of single-trial RSA on EEG datasets; 2. we want to utilize single-trial RSA and computational semantic models to investigate the role of semantic meaning in emotional word processing. We report two primary findings: 1. single-trial RSA on EEG datasets can produce meaningful and interpretable results given a high number of trials and subjects; 2. single-trial RSA reveals that emotional processing in the 500-800ms time window is associated with additional semantic analysis.
READ FULL TEXT