Variable Selection Using Nearest Neighbor Gaussian Processes

03/26/2021
by   Konstantin Posch, et al.
0

A novel Bayesian approach to the problem of variable selection using Gaussian process regression is proposed. The selection of the most relevant variables for a problem at hand often results in an increased interpretability and in many cases is an essential step in terms of model regularization. In detail, the proposed method relies on so-called nearest neighbor Gaussian processes, that can be considered as highly scalable approximations of classical Gaussian processes. To perform a variable selection the mean and the covariance function of the process are conditioned on a random set 𝒜. This set holds the indices of variables that contribute to the model. While the specification of a priori beliefs regarding 𝒜 allows to control the number of selected variables, so-called reference priors are assigned to the remaining model parameters. The application of the reference priors ensures that the process covariance matrix is (numerically) robust. For the model inference a Metropolis within Gibbs algorithm is proposed. Based on simulated data, an approximation problem from computer experiments and two real-world datasets, the performance of the new approach is evaluated.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro