Variational inequalities of multilayer elastic systems with interlayer friction: existence and uniqueness of solution and convergence of numerical solution
Based on the mathematical-physical model of pavement mechanics, a multilayer elastic system with interlayer friction conditions is constructed. Given the complex boundary conditions, the corresponding variational inequalities of the partial differential equations are derived, so that the problem can be analyzed under the variational framework. First, the existence and uniqueness of the solution of the variational inequality is proved; then the approximation error of the numerical solution based on the finite element method is analyzed, and when the finite element space satisfies certain approximation conditions, the convergence of the numerical solution is proved; finally, in the trivial finite element space, the convergence order of the numerical solution is derived. The above conclusions provide basic theoretical support for solving the displacement-strain problem of multilayer elastic systems under the framework of variational inequalities.
READ FULL TEXT