Variational reaction-diffusion systems for semantic segmentation

04/01/2016
by   Paul Vernaza, et al.
0

A novel global energy model for multi-class semantic image segmentation is proposed that admits very efficient exact inference and derivative calculations for learning. Inference in this model is equivalent to MAP inference in a particular kind of vector-valued Gaussian Markov random field, and ultimately reduces to solving a linear system of linear PDEs known as a reaction-diffusion system. Solving this system can be achieved in time scaling near-linearly in the number of image pixels by reducing it to sequential FFTs, after a linear change of basis. The efficiency and differentiability of the model make it especially well-suited for integration with convolutional neural networks, even allowing it to be used in interior, feature-generating layers and stacked multiple times. Experimental results are shown demonstrating that the model can be employed profitably in conjunction with different convolutional net architectures, and that doing so compares favorably to joint training of a fully-connected CRF with a convolutional net.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset