VariTex: Variational Neural Face Textures
Deep generative models can synthesize photorealistic images of human faces with novel identities. However, a key challenge to the wide applicability of such techniques is to provide independent control over semantically meaningful parameters: appearance, head pose, face shape, and facial expressions. In this paper, we propose VariTex - to the best of our knowledge the first method that learns a variational latent feature space of neural face textures, which allows sampling of novel identities. We combine this generative model with a parametric face model and gain explicit control over head pose and facial expressions. To generate complete images of human heads, we propose an additive decoder that adds plausible details such as hair. A novel training scheme enforces a pose-independent latent space and in consequence, allows learning a one-to-many mapping between latent codes and pose-conditioned exterior regions. The resulting method can generate geometrically consistent images of novel identities under fine-grained control over head pose, face shape, and facial expressions. This facilitates a broad range of downstream tasks, like sampling novel identities, changing the head pose, expression transfer, and more. Code and models are available for research on https://mcbuehler.github.io/VariTex.
READ FULL TEXT