varstan: An R package for Bayesian analysis of structured time series models with Stan

varstan is an R package for Bayesian analysis of time series models using Stan. The package offers a dynamic way to choose a model, define priors in a wide range of distributions, check model's fit, and forecast with the m-steps ahead predictive distribution. The users can widely choose between implemented models such as multiplicative seasonal ARIMA, dynamic regression, random walks, GARCH, dynamic harmonic regressions,VARMA, stochastic Volatility Models, and generalized t-student with unknown degree freedom GARCH models. Every model constructor in varstan defines weakly informative priors, but prior specifications can be changed in a dynamic and flexible way, so the prior distributions reflect the parameter's initial beliefs. For model selection, the package offers the classical information criteria: AIC, AICc, BIC, DIC, Bayes factor. And more recent criteria such as Widely-applicable information criteria (WAIC), and the Bayesian leave one out cross-validation (loo). In addition, a Bayesian version for automatic order selection in seasonal ARIMA and dynamic regression models can be used as an initial step for the time series analysis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset