Verifiably Safe Off-Model Reinforcement Learning
The desire to use reinforcement learning in safety-critical settings has inspired a recent interest in formal methods for learning algorithms. Existing formal methods for learning and optimization primarily consider the problem of constrained learning or constrained optimization. Given a single correct model and associated safety constraint, these approaches guarantee efficient learning while provably avoiding behaviors outside the safety constraint. Acting well given an accurate environmental model is an important pre-requisite for safe learning, but is ultimately insufficient for systems that operate in complex heterogeneous environments. This paper introduces verification-preserving model updates, the first approach toward obtaining formal safety guarantees for reinforcement learning in settings where multiple environmental models must be taken into account. Through a combination of design-time model updates and runtime model falsification, we provide a first approach toward obtaining formal safety proofs for autonomous systems acting in heterogeneous environments.
READ FULL TEXT