Vertical Semi-Federated Learning for Efficient Online Advertising
As an emerging secure learning paradigm in leveraging cross-silo private data, vertical federated learning (VFL) is expected to improve advertising models by enabling the joint learning of complementary user attributes privately owned by the advertiser and the publisher. However, the 1) restricted applicable scope to overlapped samples and 2) high system challenge of real-time federated serving have limited its application to advertising systems. In this paper, we advocate new learning setting Semi-VFL (Vertical Semi-Federated Learning) as a lightweight solution to utilize all available data (both the overlapped and non-overlapped data) that is free from federated serving. Semi-VFL is expected to perform better than single-party models and maintain a low inference cost. It's notably important to i) alleviate the absence of the passive party's feature and ii) adapt to the whole sample space to implement a good solution for Semi-VFL. Thus, we propose a carefully designed joint privileged learning framework (JPL) as an efficient implementation of Semi-VFL. Specifically, we build an inference-efficient single-party student model applicable to the whole sample space and meanwhile maintain the advantage of the federated feature extension. Novel feature imitation and ranking consistency restriction methods are proposed to extract cross-party feature correlations and maintain cross-sample-space consistency for both the overlapped and non-overlapped data. We conducted extensive experiments on real-world advertising datasets. The results show that our method achieves the best performance over baseline methods and validate its effectiveness in maintaining cross-view feature correlation.
READ FULL TEXT