VindiCo: Privacy Safeguard Against Adaptation Based Spyware in Human-in-the-Loop IoT

02/03/2022
by   Salma Elmalaki, et al.
0

Personalized IoT adapts their behavior based on contextual information, such as user behavior and location. Unfortunately, the fact that personalized IoT adapts to user context opens a side-channel that leaks private information about the user. To that end, we start by studying the extent to which a malicious eavesdropper can monitor the actions taken by an IoT system and extract users' private information. In particular, we show two concrete instantiations (in the context of mobile phones and smart homes) of a new category of spyware which we refer to as Context-Aware Adaptation Based Spyware (SpyCon). Experimental evaluations show that the developed SpyCon can predict users' daily behavior with an accuracy of 90.3 devoted to introducing VindiCo, a software mechanism designed to detect and mitigate possible SpyCon. Being new spyware with no known prior signature or behavior, traditional spyware detection that is based on code signature or app behavior is not adequate to detect SpyCon. Therefore, VindiCo proposes a novel information-based detection engine along with several mitigation techniques to restrain the ability of the detected SpyCon to extract private information. By having general detection and mitigation engines, VindiCo is agnostic to the inference algorithm used by SpyCon. Our results show that VindiCo reduces the ability of SpyCon to infer user context from 90.3 (accuracy based on random guesses) with negligible execution overhead.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset