Virtual element methods for Biot-Kirchhoff poroelasticity

06/24/2023
by   Rekha Khot, et al.
0

This paper analyses conforming and nonconforming virtual element formulations of arbitrary polynomial degrees on general polygonal meshes for the coupling of solid and fluid phases in deformable porous plates. The governing equations consist of one fourth-order equation for the transverse displacement of the middle surface coupled with a second-order equation for the pressure head relative to the solid with mixed boundary conditions. We propose novel enrichment operators that connect nonconforming virtual element spaces of general degree to continuous Sobolev spaces. These operators satisfy additional orthogonal and best-approximation properties (referred to as a conforming companion operator in the context of finite element methods), which play an important role in the nonconforming methods. This paper proves a priori error estimates in the best-approximation form, and derives residual–based reliable and efficient a posteriori error estimates in appropriate norms, and shows that these error bounds are robust with respect to the main model parameters. The computational examples illustrate the numerical behaviour of the suggested virtual element discretisations and confirm the theoretical findings on different polygonal meshes with mixed boundary conditions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset