Visible Light Communication for Next Generation Untethered Virtual Reality Systems
Virtual and augmented reality (VR/AR) systems are emerging technologies requiring data rates of multiple Gbps. Existing high quality VR headsets require connections through HDMI cables to a computer rendering rich graphic contents to meet the extremely high data transfer rate requirement. Such a cable connection limits the VR user's mobility and interferes with the VR experience. Current wireless technologies such as WiFi cannot support the multi-Gbps graphics data transfer. Instead, we propose to use visible light communication (VLC) for establishing high speed wireless links between a rendering computer and a VR headset. But, VLC transceivers are highly directional with narrow beams and require constant maintenance of line-of-sight (LOS) alignment between the transmitter and the receiver. Thus, we present a novel multi-detector hemispherical VR headset design to tackle the beam misalignment problem caused by the VR user's random head orientation. We provide detailed analysis on how the number of detectors on the headset can be minimized while maintaining the required beam alignment and providing high quality VR experience.
READ FULL TEXT