VisImages: A Large-scale, High-quality Image Corpus in Visualization Publications
Images in visualization publications contain rich information, such as novel visual designs, model details, and experiment results. Constructing such an image corpus can contribute to the community in many aspects, including literature analysis from the perspective of visual representations, empirical studies on visual memorability, and machine learning research for chart detection. This study presents VisImages, a high-quality and large-scale image corpus collected from visualization publications. VisImages contain fruitful and diverse annotations for each image, including captions, types of visual representations, and bounding boxes. First, we algorithmically extract the images associated with captions and manually correct the errors. Second, to categorize visualizations in publications, we extend and iteratively refine the existing taxonomy through a multi-round pilot study. Third, guided by this taxonomy, we invite senior visualization practitioners to annotate visual representations that appear in each image. In this process, we borrow techniques such as "gold standards" and majority voting for quality control. Finally, we recruit the crowd to draw bounding boxes for visual representations in the images. The resulting corpus contains 35,096 annotated visualizations from 12,267 images with 12,057 captions in 1397 papers from VAST and InfoVis. We demonstrate the usefulness of VisImages through the following four use cases: 1) analysis of color usage in VAST and InfoVis papers across years, 2) discussion of the researcher preference on visualization types, 3) spatial distribution analysis of visualizations in visual analytic systems, and 4) training visualization detection models.
READ FULL TEXT