Vision-based GNSS-Free Localization for UAVs in the Wild

10/18/2022
by   Marius-Mihail Gurgu, et al.
0

Considering the accelerated development of Unmanned Aerial Vehicles (UAVs) applications in both industrial and research scenarios, there is an increasing need for localizing these aerial systems in non-urban environments, using GNSS-Free, vision-based methods. Our paper proposes a vision-based localization algorithm that utilizes deep features to compute geographical coordinates of a UAV flying in the wild. The method is based on matching salient features of RGB photographs captured by the drone camera and sections of a pre-built map consisting of georeferenced open-source satellite images. Experimental results prove that vision-based localization has comparable accuracy with traditional GNSS-based methods, which serve as ground truth. Compared to state-of-the-art Visual Odometry (VO) approaches, our solution is designed for long-distance, high-altitude UAV flights. Code and datasets are available at https://github.com/TIERS/wildnav.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset