Visualizing Evolving Trees
Evolving trees arise in many real-life scenarios from computer file systems and dynamic call graphs, to fake news propagation and disease spread. Most layout algorithms for static trees, however, do not work well in an evolving setting (e.g., they are not designed to be stable between time steps). Dynamic graph layout algorithms are better suited to this task, although they often introduce unnecessary edge crossings. With this in mind we propose two methods for visualizing evolving trees that guarantee no edge crossings, while optimizing (1) desired edge length realization, (2) layout compactness, and (3) stability. We evaluate the two new methods, along with four prior approaches (two static and two dynamic), on real-world datasets using quantitative metrics: stress, desired edge length realization, layout compactness, stability, and running time. The new methods are fully functional and available on github.
READ FULL TEXT