Visually Aligned Word Embeddings for Improving Zero-shot Learning

07/18/2017
by   Ruizhi Qiao, et al.
0

Zero-shot learning (ZSL) highly depends on a good semantic embedding to connect the seen and unseen classes. Recently, distributed word embeddings (DWE) pre-trained from large text corpus have become a popular choice to draw such a connection. Compared with human defined attributes, DWEs are more scalable and easier to obtain. However, they are designed to reflect semantic similarity rather than visual similarity and thus using them in ZSL often leads to inferior performance. To overcome this visual-semantic discrepancy, this work proposes an objective function to re-align the distributed word embeddings with visual information by learning a neural network to map it into a new representation called visually aligned word embedding (VAWE). Thus the neighbourhood structure of VAWEs becomes similar to that in the visual domain. Note that in this work we do not design a ZSL method that projects the visual features and semantic embeddings onto a shared space but just impose a requirement on the structure of the mapped word embeddings. This strategy allows the learned VAWE to generalize to various ZSL methods and visual features. As evaluated via four state-of-the-art ZSL methods on four benchmark datasets, the VAWE exhibit consistent performance improvement.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset