VOICE: Visual Oracle for Interaction, Conversation, and Explanation
We present VOICE, a novel approach for connecting large language models' (LLM) conversational capabilities with interactive exploratory visualization. VOICE introduces several innovative technical contributions that drive our conversational visualization framework. Our foundation is a pack-of-bots that can perform specific tasks, such as assigning tasks, extracting instructions, and generating coherent content. We employ fine-tuning and prompt engineering techniques to tailor bots' performance to their specific roles and accurately respond to user queries, and a new prompt-based iterative scene-tree generation establishes a coupling with a structural model. Our text-to-visualization method generates a flythrough sequence matching the content explanation. Finally, 3D natural language interaction provides capabilities to navigate and manipulate the 3D models in real-time. The VOICE framework can receive arbitrary voice commands from the user and responds verbally, tightly coupled with corresponding visual representation with low latency and high accuracy. We demonstrate the effectiveness and high generalizability potential of our approach by applying it to two distinct domains: analyzing three 3D molecular models with multi-scale and multi-instance attributes, and showcasing its effectiveness on a cartographic map visualization. A free copy of this paper and all supplemental materials are available at https://osf.io/g7fbr/.
READ FULL TEXT