Volumetric Data Exploration with Machine Learning-Aided Visualization in Neutron Science

10/16/2017
by   Yawei Hui, et al.
0

Recent advancements in neutron and x-ray sources, instrumentation and data collection modes have significantly increased the experimental data size (which could easily contain 10^8-10^10 points), so that conventional volumetric visualization approaches become inefficient for both still imaging and interactive OpenGL rendition in a 3-D setting. We introduce a new approach based on the unsupervised machine learning algorithm, Density-Based Spatial Clustering of Applications with Noise (DBSCAN), to efficiently analyze and visualize large volumetric datasets. Here we present two examples, including a single crystal diffuse scattering dataset and a neutron tomography dataset. We found that by using the intensity as the weight factor during clustering, the algorithm becomes very effective in de-noising and feature/boundary detection, and thus enables better visualization of the hierarchical internal structures of the scattering data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset