WakeUpNet: A Mobile-Transformer based Framework for End-to-End Streaming Voice Trigger

10/06/2022
by   Zixing Zhang, et al.
0

End-to-end models have gradually become the main technical stream for voice trigger, aiming to achieve an utmost prediction accuracy but with a small footprint. In present paper, we propose an end-to-end voice trigger framework, namely WakeupNet, which is basically structured on a Transformer encoder. The purpose of this framework is to explore the context-capturing capability of Transformer, as sequential information is vital for wakeup-word detection. However, the conventional Transformer encoder is too large to fit our task. To address this issue, we introduce different model compression approaches to shrink the vanilla one into a tiny one, called mobile-Transformer. To evaluate the performance of mobile-Transformer, we conduct extensive experiments on a large public-available dataset HiMia. The obtained results indicate that introduced mobile-Transformer significantly outperforms other frequently used models for voice trigger in both clean and noisy scenarios.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset