Web Page Content Extraction Based on Multi-feature Fusion

03/21/2022
by   Bowen Yu, et al.
0

With the rapid development of Internet technology, people have more and more access to a variety of web page resources. At the same time, the current rapid development of deep learning technology is often inseparable from the huge amount of Web data resources. On the other hand, NLP is also an important part of data processing technology, such as web page data extraction. At present, the extraction technology of web page text mainly uses a single heuristic function or strategy, and most of them need to determine the threshold manually. With the rapid growth of the number and types of web resources, there are still problems to be solved when using a single strategy to extract the text information of different pages. This paper proposes a web page text extraction algorithm based on multi-feature fusion. According to the text information characteristics of web resources, DOM nodes are used as the extraction unit to design multiple statistical features, and high-order features are designed according to heuristic strategies. This method establishes a small neural network, takes multiple features of DOM nodes as input, predicts whether the nodes contain text information, makes full use of different statistical information and extraction strategies, and adapts to more types of pages. Experimental results show that this method has a good ability of web page text extraction and avoids the problem of manually determining the threshold.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset