What Do We Maximize in Self-Supervised Learning?

07/20/2022
by   Ravid Shwartz-Ziv, et al.
175

In this paper, we examine self-supervised learning methods, particularly VICReg, to provide an information-theoretical understanding of their construction. As a first step, we demonstrate how information-theoretic quantities can be obtained for a deterministic network, offering a possible alternative to prior work that relies on stochastic models. This enables us to demonstrate how VICReg can be (re)discovered from first principles and its assumptions about data distribution. Furthermore, we empirically demonstrate the validity of our assumptions, confirming our novel understanding of VICReg. Finally, we believe that the derivation and insights we obtain can be generalized to many other SSL methods, opening new avenues for theoretical and practical understanding of SSL and transfer learning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset