What Does Explainable AI Really Mean? A New Conceptualization of Perspectives

10/02/2017
by   Derek Doran, et al.
0

We characterize three notions of explainable AI that cut across research fields: opaque systems that offer no insight into its algo- rithmic mechanisms; interpretable systems where users can mathemat- ically analyze its algorithmic mechanisms; and comprehensible systems that emit symbols enabling user-driven explanations of how a conclusion is reached. The paper is motivated by a corpus analysis of NIPS, ACL, COGSCI, and ICCV/ECCV paper titles showing differences in how work on explainable AI is positioned in various fields. We close by introducing a fourth notion: truly explainable systems, where automated reasoning is central to output crafted explanations without requiring human post processing as final step of the generative process.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset