When Image Decomposition Meets Deep Learning: A Novel Infrared and Visible Image Fusion Method
Infrared and visible image fusion, as a hot topic in image processing and image enhancement, aims to produce fused images retaining the detail texture information in visible images and the thermal radiation information in infrared images. In this paper, we propose a novel two-stream auto-encoder (AE) based fusion network. The core idea is that the encoder decomposes an image into base and detail feature maps with low- and high-frequency information, respectively, and that the decoder is responsible for the original image reconstruction. To this end, a well-designed loss function is established to make the base/detail feature maps similar/dissimilar. In the test phase, base and detail feature maps are respectively merged via a fusion module, and the fused image is recovered by the decoder. Qualitative and quantitative results demonstrate that our method can generate fusion images containing highlighted targets and abundant detail texture information with strong reproducibility and meanwhile superior than the state-of-the-art (SOTA) approaches.
READ FULL TEXT