Who Needs Decoders? Efficient Estimation of Sequence-level Attributes
State-of-the-art sequence-to-sequence models often require autoregressive decoding, which can be highly expensive. However, for some downstream tasks such as out-of-distribution (OOD) detection and resource allocation, the actual decoding output is not needed just a scalar attribute of this sequence. In these scenarios, where for example knowing the quality of a system's output to predict poor performance prevails over knowing the output itself, is it possible to bypass the autoregressive decoding? We propose Non-Autoregressive Proxy (NAP) models that can efficiently predict general scalar-valued sequence-level attributes. Importantly, NAPs predict these metrics directly from the encodings, avoiding the expensive autoregressive decoding stage. We consider two sequence-to-sequence task: Machine Translation (MT); and Automatic Speech Recognition (ASR). In OOD for MT, NAPs outperform a deep ensemble while being significantly faster. NAPs are also shown to be able to predict performance metrics such as BERTScore (MT) or word error rate (ASR). For downstream tasks, such as data filtering and resource optimization, NAPs generate performance predictions that outperform predictive uncertainty while being highly inference efficient.
READ FULL TEXT