Why Deep Neural Networks for Function Approximation?

10/13/2016
by   Shiyu Liang, et al.
0

Recently there has been much interest in understanding why deep neural networks are preferred to shallow networks. We show that, for a large class of piecewise smooth functions, the number of neurons needed by a shallow network to approximate a function is exponentially larger than the corresponding number of neurons needed by a deep network for a given degree of function approximation. First, we consider univariate functions on a bounded interval and require a neural network to achieve an approximation error of ε uniformly over the interval. We show that shallow networks (i.e., networks whose depth does not depend on ε) require Ω(poly(1/ε)) neurons while deep networks (i.e., networks whose depth grows with 1/ε) require O(polylog(1/ε)) neurons. We then extend these results to certain classes of important multivariate functions. Our results are derived for neural networks which use a combination of rectifier linear units (ReLUs) and binary step units, two of the most popular type of activation functions. Our analysis builds on a simple observation: the multiplication of two bits can be represented by a ReLU.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset