Why Do We Click: Visual Impression-aware News Recommendation
There is a soaring interest in the news recommendation research scenario due to the information overload. To accurately capture users' interests, we propose to model multi-modal features, in addition to the news titles that are widely used in existing works, for news recommendation. Besides, existing research pays little attention to the click decision-making process in designing multi-modal modeling modules. In this work, inspired by the fact that users make their click decisions mostly based on the visual impression they perceive when browsing news, we propose to capture such visual impression information with visual-semantic modeling for news recommendation. Specifically, we devise the local impression modeling module to simultaneously attend to decomposed details in the impression when understanding the semantic meaning of news title, which could explicitly get close to the process of users reading news. In addition, we inspect the impression from a global view and take structural information, such as the arrangement of different fields and spatial position of different words on the impression, into the modeling of multiple modalities. To accommodate the research of visual impression-aware news recommendation, we extend the text-dominated news recommendation dataset MIND by adding snapshot impression images and will release it to nourish the research field. Extensive comparisons with the state-of-the-art news recommenders along with the in-depth analyses demonstrate the effectiveness of the proposed method and the promising capability of modeling visual impressions for the content-based recommenders.
READ FULL TEXT