Why Should we Combine Training and Post-Training Methods for Out-of-Distribution Detection?

Deep neural networks are known to achieve superior results in classification tasks. However, it has been recently shown that they are incapable to detect examples that are generated by a distribution which is different than the one they have been trained on since they are making overconfident prediction for Out-Of-Distribution (OOD) examples. OOD detection has attracted a lot of attention recently. In this paper, we review some of the most seminal recent algorithms in the OOD detection field, we divide those methods into training and post-training and we experimentally show how the combination of the former with the latter can achieve state-of-the-art results in the OOD detection task.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset