Why Using Either Aggregated Features or Adjacency Lists in Directed or Undirected Graph? Empirical Study and Simple Classification Method
Node classification is one of the hottest tasks in graph analysis. In this paper, we focus on the choices of node representations (aggregated features vs. adjacency lists) and the edge direction of an input graph (directed vs. undirected), which have a large influence on classification results. We address the first empirical study to benchmark the performance of various GNNs that use either combination of node representations and edge directions. Our experiments demonstrate that no single combination stably achieves state-of-the-art results across datasets, which indicates that we need to select appropriate combinations depending on the characteristics of datasets. In response, we propose a simple yet holistic classification method A2DUG which leverages all combinations of node representation variants in directed and undirected graphs. We demonstrate that A2DUG stably performs well on various datasets. Surprisingly, it largely outperforms the current state-of-the-art methods in several datasets. This result validates the importance of the adaptive effect control on the combinations of node representations and edge directions.
READ FULL TEXT