Wide Activation for Efficient and Accurate Image Super-Resolution

08/27/2018
by   Jiahui Yu, et al.
0

In this report we demonstrate that with same parameters and computational budgets, models with wider features before ReLU activation have significantly better performance for single image super-resolution (SISR). The resulted SR residual network has a slim identity mapping pathway with wider (2× to 4×) channels before activation in each residual block. To further widen activation (6× to 9×) without computational overhead, we introduce linear low-rank convolution into SR networks and achieve even better accuracy-efficiency tradeoffs. In addition, compared with batch normalization or no normalization, we find training with weight normalization leads to better accuracy for deep super-resolution networks. Our proposed SR network WDSR achieves better results on large-scale DIV2K image super-resolution benchmark in terms of PSNR with same or lower computational complexity. Based on WDSR, our method also won 1st places in NTIRE 2018 Challenge on Single Image Super-Resolution in all three realistic tracks. Experiments and ablation studies support the importance of wide activation for image super-resolution. Code is released at: https://github.com/JiahuiYu/wdsr_ntire2018

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset