Windowed Green function method for wave scattering by periodic arrays of 2D obstacles

This paper introduces a novel boundary integral equation (BIE) method for the numerical solution of problems of planewave scattering by periodic line arrays of two-dimensional penetrable obstacles. Our approach is built upon a direct BIE formulation that leverages the simplicity of the free-space Green function but in turn entails evaluation of integrals over the unit-cell boundaries. Such integrals are here treated via the window Green function method. The windowing approximation together with a finite-rank operator correction – used to properly impose the Rayleigh radiation condition – yield a robust second-kind BIE that produces super-algebraically convergent solutions throughout the spectrum, including at the challenging Rayleigh-Wood anomalies. The corrected windowed BIE can be discretized by means of off-the-shelf Nyström and boundary element methods, and it leads to linear systems suitable for iterative linear-algebra solvers as well as standard fast matrix-vector product algorithms. A variety of numerical examples demonstrate the accuracy and robustness of the proposed methodology

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro