Wireless Federated Learning with Local Differential Privacy
In this paper, we study the problem of federated learning (FL) over a wireless channel, modeled by a Gaussian multiple access channel (MAC), subject to local differential privacy (LDP) constraints. We show that the superposition nature of the wireless channel provides a dual benefit of bandwidth efficient gradient aggregation, in conjunction with strong LDP guarantees for the users. We propose a private wireless gradient aggregation scheme, which shows that when aggregating gradients from K users, the privacy leakage per user scales as O(1/√(K)) compared to orthogonal transmission in which the privacy leakage scales as a constant. We also present analysis for the convergence rate of the proposed private FL aggregation algorithm and study the tradeoffs between wireless resources, convergence, and privacy.
READ FULL TEXT