Worst-case Analysis for Interactive Evaluation of Boolean Provenance

05/09/2022
by   Antoine Amarilli, et al.
0

In recent work, we have introduced a framework for fine-grained consent management in databases, which combines Boolean data provenance with the field of interactive Boolean evaluation. In turn, interactive Boolean evaluation aims at unveiling the underlying truth value of a Boolean expression by frugally probing the truth values of individual values. The required number of probes depends on the Boolean provenance structure and on the (a-priori unknown) probe answers. Prior work has analyzed and aimed to optimize the expected number of probes, where expectancy is with respect to a probability distribution over probe answers. This paper gives a novel worst-case analysis for the problem, inspired by the decision tree depth of Boolean functions. Specifically, we introduce a notion of evasive provenance expressions, namely expressions, where one may need to probe all variables in the worst case. We show that read-once expressions are evasive, and identify an additional class of expressions (acyclic monotone 2-DNF) for which evasiveness may be decided in PTIME. As for the more general question of finding the optimal strategy, we show that it is coNP-hard in general. We are still able to identify a sub-class of provenance expressions that is "far from evasive", namely, where an optimal worst-case strategy probes only log(n) out of the n variables in the expression, and show that we can find this optimal strategy in polynomial time.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset