XLM-T: A Multilingual Language Model Toolkit for Twitter
Language models are ubiquitous in current NLP, and their multilingual capacity has recently attracted considerable attention. However, current analyses have almost exclusively focused on (multilingual variants of) standard benchmarks, and have relied on clean pre-training and task-specific corpora as multilingual signals. In this paper, we introduce XLM-T, a framework for using and evaluating multilingual language models in Twitter. This framework features two main assets: (1) a strong multilingual baseline consisting of an XLM-R (Conneau et al. 2020) model pre-trained on millions of tweets in over thirty languages, alongside starter code to subsequently fine-tune on a target task; and (2) a set of unified sentiment analysis Twitter datasets in eight different languages. This is a modular framework that can easily be extended to additional tasks, as well as integrated with recent efforts also aimed at the homogenization of Twitter-specific datasets (Barbieri et al. 2020).
READ FULL TEXT