You Only Hear Once: A YOLO-like Algorithm for Audio Segmentation and Sound Event Detection

09/01/2021
by   Satvik Venkatesh, et al.
8

Audio segmentation and sound event detection are crucial topics in machine listening that aim to detect acoustic classes and their respective boundaries. It is useful for audio-content analysis, speech recognition, audio-indexing, and music information retrieval. In recent years, most research articles adopt segmentation-by-classification. This technique divides audio into small frames and individually performs classification on these frames. In this paper, we present a novel approach called You Only Hear Once (YOHO), which is inspired by the YOLO algorithm popularly adopted in Computer Vision. We convert the detection of acoustic boundaries into a regression problem instead of frame-based classification. This is done by having separate output neurons to detect the presence of an audio class and predict its start and end points. YOHO obtained a higher F-measure and lower error rate than the state-of-the-art Convolutional Recurrent Neural Network on multiple datasets. As YOHO is purely a convolutional neural network and has no recurrent layers, it is faster during inference. In addition, as this approach is more end-to-end and predicts acoustic boundaries directly, it is significantly quicker during post-processing and smoothing.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset