Zero-shot Dependency Parsing with Pre-trained Multilingual Sentence Representations

10/12/2019
by   Ke Tran, et al.
0

We investigate whether off-the-shelf deep bidirectional sentence representations trained on a massively multilingual corpus (multilingual BERT) enable the development of an unsupervised universal dependency parser. This approach only leverages a mix of monolingual corpora in many languages and does not require any translation data making it applicable to low-resource languages. In our experiments we outperform the best CoNLL 2018 language-specific systems in all of the shared task's six truly low-resource languages while using a single system. However, we also find that (i) parsing accuracy still varies dramatically when changing the training languages and (ii) in some target languages zero-shot transfer fails under all tested conditions, raising concerns on the 'universality' of the whole approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset