Zero-touch Continuous Network Slicing Control via Scalable Actor-Critic Learning

01/17/2021
by   Farhad Rezazadeh, et al.
0

Artificial intelligence (AI)-driven zero-touch network slicing is envisaged as a promising cutting-edge technology to harness the full potential of heterogeneous 5G and beyond 5G (B5G) communication systems and enable the automation of demand-aware resource management and orchestration (MANO). In this paper, we tackle the issue of B5G radio access network (RAN) joint slice admission control and resource allocation according to proposed slice-enabling cell-free massive multiple-input multiple-output (mMIMO) setup by invoking a continuous deep reinforcement learning (DRL) method. We present a novel Actor-Critic-based network slicing approach called, prioritized twin delayed distributional deep deterministic policy gradient (D-TD3). The paper defines and corroborates via extensive experimental results a zero-touch network slicing scheme with a multi-objective approach where the central server learns continuously to accumulate the knowledge learned in the past to solve future problems and re-configure computing resources autonomously while minimizing latency, energy consumption, and virtual network function (VNF) instantiation cost for each slice. Moreover, we pursue a state-action return distribution learning approach with the proposed replay policy and reward-penalty mechanisms. Finally, we present numerical results to showcase the gain of the adopted multi-objective strategy and verify the performance in terms of achieved slice admission rate, latency, energy, CPU utilization, and time efficiency.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset