A Novel Simulation-Based Quality Metric for Evaluating Grasps on 3D Deformable Objects
Evaluation of grasps on deformable 3D objects is a little-studied problem, even if the applicability of rigid object grasp quality measures for deformable ones is an open question. A central issue with most quality measures is their dependence on contact points which for deformable objects depend on the deformations. This paper proposes a grasp quality measure for deformable objects that uses information about object deformation to calculate the grasp quality. Grasps are evaluated by simulating the deformations during grasping and predicting the contacts between the gripper and the grasped object. The contact information is then used as input for a new grasp quality metric to quantify the grasp quality. The approach is benchmarked against two classical rigid-body quality metrics on over 600 grasps in the Isaac gym simulation and over 50 real-world grasps. Experimental results show an average improvement of 18% in the grasp success rate for deformable objects compared to the classical rigid-body quality metrics.
READ FULL TEXT