ALMOST: Adversarial Learning to Mitigate Oracle-less ML Attacks via Synthesis Tuning

03/06/2023
by   Animesh Basak Chowdhury, et al.
0

Oracle-less machine learning (ML) attacks have broken various logic locking schemes. Regular synthesis, which is tailored for area-power-delay optimization, yields netlists where key-gate localities are vulnerable to learning. Thus, we call for security-aware logic synthesis. We propose ALMOST, a framework for adversarial learning to mitigate oracle-less ML attacks via synthesis tuning. ALMOST uses a simulated-annealing-based synthesis recipe generator, employing adversarially trained models that can predict state-of-the-art attacks' accuracies over wide ranges of recipes and key-gate localities. Experiments on ISCAS benchmarks confirm the attacks' accuracies drops to around 50% for ALMOST-synthesized circuits, all while not undermining design optimization.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro