Bootstrapping Semantic Segmentation with Regional Contrast

04/09/2021
by   Shikun Liu, et al.
7

We present ReCo, a contrastive learning framework designed at a regional level to assist learning in semantic segmentation. ReCo performs semi-supervised or supervised pixel-level contrastive learning on a sparse set of hard negative pixels, with minimal additional memory footprint. ReCo is easy to implement, being built on top of off-the-shelf segmentation networks, and consistently improves performance in both semi-supervised and supervised semantic segmentation methods, achieving smoother segmentation boundaries and faster convergence. The strongest effect is in semi-supervised learning with very few labels. With ReCo, we achieve 50 whilst requiring only 20 labelled images, improving by 10 previous state-of-the-art. Code is available at https://github.com/lorenmt/reco.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset