Confidence-Calibrated Ensemble Dense Phrase Retrieval

06/28/2023
by   William Yang, et al.
0

In this paper, we consider the extent to which the transformer-based Dense Passage Retrieval (DPR) algorithm, developed by (Karpukhin et. al. 2020), can be optimized without further pre-training. Our method involves two particular insights: we apply the DPR context encoder at various phrase lengths (e.g. one-sentence versus five-sentence segments), and we take a confidence-calibrated ensemble prediction over all of these different segmentations. This somewhat exhaustive approach achieves start-of-the-art results on benchmark datasets such as Google NQ and SQuAD. We also apply our method to domain-specific datasets, and the results suggest how different granularities are optimal for different domains

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset